

 Page 1 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts

UIntroduction to Pseudocode
This section covers the use of pseudocode in the production of algorithms. Students should use standard
computing text books to find out information on the features of programming languages (high level and
low level), interpreters, compilers, assemblers, user documentation and technical documentation.

No specific programming language is referred to; development of algorithms using pseudocode uses
generic descriptions of looping, branching, data manipulation, input/output, totaling and counting
techniques.

The section is broken down into four areas:

1. Description of common pseudocode terms
2. Writing algorithms using pseudocode
3. Finding errors in sections of pseudocode
4. Exercises

UUnderstand and use assignment statements

Assignment
An assignment is an instruction in a program that places a value into a specified variable.
Some typical assignments are:

 TheLength  20.5
 TheUsersName$  “Charlie”
 TheArea  TheWidth * TheLength
 TotalCost  LabelledCost + 15
 Counter  Counter + 1

Note that the last example is a common method used to increment the value of a variable. It could be read
as:

“The new value of Counter is its existing value plus one”

What is an algorithm?

It 0T 0Tis a procedure for solving a problem in terms of the actions to be executed and the order in which those
actions are to be executed. An algorithm is merely the sequence of steps taken to solve a problem. The
steps are normally "sequence," "selection,” "iteration," and a case-type statement.

 Page 2 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
The "selection" is the " if ….. then ….. else ….. endif" statement, and the iteration is satisfied by a number of
statements, such as the " for … to … next, while … endwhile and repeat … until " while the case-type
statement is satisfied by the “case of ….. otherwise …... endcase" statement.
URelational operators, e.g. =, <, <=, >, >= and <>

Relational operators are used in the format: [Expression] [Operator] [Expression] and will always return a
Boolean (True or False) value.

Relational operators are typically used with the IF selection and also within conditional loops
(REPEAT-UNTIL or WHILE-WEND).

In the following table, the variables a and name$ have the following assignments:

a3+5
name$ “JAMES”

 Page 3 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
Boolean operators AND, OR and NOT

AND and OR
The AND and OR operators always return a Boolean result and are used in the format:

[Boolean] [Operator] [Boolean]

The following ‘truth’ table summarises the result of the Boolean operations:

Values Results

NOT
The NOT operator reverses the result of the Boolean expression and is used in the format:

NOT [Boolean]

The following truth table summarises the NOT operation:

Examples of Boolean ‘logic’
Consider the following algorithm, which is used to monitor a printer and display its output via an
LCD display in the front panel:

IF NOT(PaperTrayEmpty) AND (FilesWaiting > 0) THEN
OUTPUT “PRINTING…”

ELSE
OUTPUT “PLEASE ADD PAPER”

END IF

 Page 4 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
Branching
There are two common ways of branching:

1. case of ….. otherwise …... endcase
2. if ….. then ….. else ….. endif

case of if … then
case number of
1: x  x + 1
2: y  y + 1
otherwise print “error”
endcase

if number = 1 then x  x + 1
else if
number = 2 then y  y + 1
else print “error”
endif
endif

SELECT-CASE
This selection method is used if there are MORE THAN TWO possible outcomes to a test:
Creating a Select-Case statement is simple to do. The next program will prompt the user to select the key
A-D and the program will respond by telling the user what key was entered.

We will create a Select-Case statement for the A-D keys entered.

DIM KeyPressed AS STRING

CLS

PRINT
PRINT

INPUT "Please Enter A Key (A,B,C,D): ", KeyPressed

KeyPressed = UCASE$(KeyPressed)

PRINT

SELECT CASE KeyPressed
 CASE "A"
 PRINT "A Was Entered"
 CASE "B"
 PRINT "B Was Entered"
 CASE "C"
 PRINT "C Was Entered"
 CASE "D"
 PRINT "D Was Entered"

 Page 5 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
 CASE ELSE
 PRINT "Some Other Key Was Entered"
END SELECT

DIM Score AS INTEGER

CLS

PRINT
PRINT
INPUT "Enter The Test Score: ", Score

PRINT

SELECT CASE Score
 CASE IS >= 97
 PRINT "Grade A+"
 CASE 93 TO 96
 PRINT "Grade A"
 CASE 90 TO 92
 PRINT "Grade A-"
 CASE 87 TO 89
 PRINT "Grade B+"
 CASE 83 TO 86
 PRINT "Grade B"
 CASE 80 TO 82
 PRINT "Grade B-"
 CASE 77 TO 79
 PRINT "Grade C+"
 CASE 73 TO 76
 PRINT "Grade C"
 CASE 70 TO 72
 PRINT "Grade C-"
 CASE 67 TO 69
 PRINT "Grade D+"
 CASE 63 TO 66
 PRINT "Grade D"
 CASE 60 TO 62
 PRINT "Grade D-"
 CASE ELSE
 PRINT "Fail"
END SELECT

 Page 6 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
IF-THEN-ELSE-ENDIF
This selection method is used if there are TWO possible outcomes to a test:
| IF { conditional statement } THEN |
| { statement 1 } |
| ELSE |
| { statement 2 } |
| ENDIF |

Example:
| if X > 10 then |
| PRINT X; " is > 10" |
| else |
| PRINT X; " is <= 10" |
| endif |

Dim count As Integer = 0
Dim message As String

If count = 0 Then
 message = "There are no items."
ElseIf count = 1 Then
 message = "There is 1 item."
Else
 message = "There are " & count & " items."
End If

 Page 7 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts

Loops

Iteration
Iteration is a control structure in which a group of statements is executed repeatedly – either a set
number of times or until a specific condition is True.
There are three common ways of performing a looping function:

1. for … to … next,
2. while … endwhile
3. repeat … until

The following example input 100 numbers and finds the total of the 100 numbers and outputs this total.
All three looping techniques are shown:

for … to while … endwhile repeat … until
for count  1 to 100
 input number
 total total + number
 next
 print total

while count < 101
 input number
 total  total+ number
 count  count + 1
endwhile
 print total

repeat
 input number
 total  total+number
 count  count+1
until count=100

FOR-NEXT
This is an unconditional loop in which the number of repetitions is set at the beginning.

FOR X = 1 TO 5
Answer = X*3
OUTPUT X, Answer

NEXT

Sample code:
|10 sum = 0 |
|20 FOR x = 1 to 10 |
|30 print x |
|40 input "enter a number";n |
|50 sum = sum + n |
|60 NEXT x |
|70 print "The sum of the numbers you gave is";sum |

 Page 8 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
WHILE-ENDWHILE
This is a conditional loop, which has a test at the start and repeats until the condition is false:

X = 0
WHILE X < 6 DO

X = X + 1
Answer = X*3
OUTPUT X, Answer

ENDWHILE

Sample code:

| 10 sum = 0 |
| 20 x = 1 |
| 30 WHILE x < 11 |
| 40 print x |
| 50 input "enter a number";n |

| 60 sum = sum + n |
| 70 x = x + 1 |
| 80 WEND |
| 90 print "The sum of the numbers you gave is";sum |

REPEAT-UNTIL
This is a conditional loop, which has a test at the end and repeats until the condition is true:

X = 0
REPEAT

X = X + 1
Answer = X*3
OUTPUT X, Answer

UNTIL X > 4

Common pseudocode terms:

1.1) Counting

Counting in 1s is quite simple; use of the statement count  count + 1 will enable counting to be done
(e.g. in controlling a repeat loop). The statement literally means: the (new) count =the (old) count + 1.

It is possible to count in any increments just by altering the numerical value in the statement (e.g. count
 count – 1) will count backwards.

 Page 9 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts

1.2) Totaling

To add up a series numbers the following type of statement should be used:

total  total + number

This literally means (new) total = (old) total + value of number.

1.3) Input/output

Input and output indicated by the use of the terms READ number, PRINT total, PRINT “result is” x and so
on.

Writing algorithms using pseudocode

The following five examples use the above pseudocode terms. These are the same problems discussed in
section 3.1 using flow charts – both methods are acceptable ways of representing an algorithm.

2.1 Example 1
A town contains 5000 houses. Each house owner must pay tax based on the value of the house. Houses
over $200 000 pay 2% of their value in tax, houses over $100 000 pay 1.5% of their value in tax and houses
over $50 000 pay 1% of their value in tax. All others pay no tax.
Write an algorithm to solve the problem using pseudocode.

for count  1 to 5000

input house
if house > 50 000 then tax  house * 0.010
else if house > 100 000 then tax  house * 0.015
else if house > 200 000 then tax  house * 0.020

else tax  0
print tax

next

Notes:
(1) a while loop or a repeat loop would have worked just as well
(2) the use of endif isn’t essential in the pseudocode

 Page 10 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
For example,
count  0
while count < 5001

input house
if house > 50000 then tax  house * 0.010

else if house > 100 000 then tax  house * 0.015
else if house > 200 000 then tax  house * 0.020

else tax  0
endif
endif

endif
print tax
count  count + 1

endwhile

EXERCISE: Re-write the above algorithm using a repeat loop and modify the if … then … else statements to
include both parts of the house price range.
(e.g. if house > 50000 and house <= 100000 then tax = house * 0.01)

2.2 Example 2

The following formula is used to calculate n: n = x * x/(1 – x)
The value x = 0 is used to stop the algorithm. The calculation is repeated using values of x until the value x
= 0 is input. There is also a need to check for error conditions. The values of n and x should be output.

Write an algorithm to show this repeated calculation using pseudocode.

NOTE: It is much easier in this example to input x first and then loop round doing the calculation until
eventually x = 0. Because of this, it would be necessary to input x twice (i.e. inside the loop and outside the
loop). If input x occurred only once it would lead to a more complicated algorithm.

(Also note in the algorithm that <> is used to represent ≠ “not equals to”).

A while loop is used here, but a repeat loop would work just as well.

input x
while x <> 0 do

if x = 1 then print “error”
else n  (x * x)/(1 – x)

print n, x
endif
input x

endwhile

 Page 11 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
2.3 Example 3
Write an algorithm using pseudocode which takes temperatures input over a 100 day period (once per
day) and output the number of days when the temperature was below 20C and the number of days when
the temperature was 20C or above.

(NOTE: since the number of inputs is known, a for … to loop can be used. However, a while loop or a repeat
loop would work just as well).

total1  0 : total2  0
for days  1 to 100

input temperature
if temperature < 20 then total1  total1 + 1

else total2  total2 + 1
endif

next
print total1, total2

This is a good example of an algorithm that could be written using the case construct rather than if … then
… else. The following section of code replaces the statements if temperature < 20 then …… endif:
case temperature of
1: total1 = total1 + 1
2: total2 = total2 + 1
endcase

 Page 12 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
2.4 Example 4
Write an algorithm using pseudocode which:

 inputs the top speeds of 5000 cars
 outputs the fastest speed and the slowest speed
 outputs the average speed of all the 5000 cars

(NOTE: Again since the actual number of data items to be input is known any one of the three loop
structures could be used. It is necessary to set values for the fastest (usually set at zero) and the slowest
(usually set at an unusually high value) so that each input can be compared. Every time a value is input
which > the value stored in fastest then this input value replaces the existing value in fastest; and similarly
for slowest).

fastest  0: count  0
slowest  1000
repeat

input top_speed
total  total + top_speed
if top_speed > fastest then fastest  top_speed

if top_speed < slowest then slowest  top_speed
endif

endif
count  count + 1

until count = 5000
average  total * 100/5000
print fastest, slowest, average

 Page 13 of 13

Computer Science 2210 (Notes)
Chapter: 2.1 Algorithm design and
problem-solving

Topic: 2.1.2 Pseudocode and flowcharts
2.5 Example 5
A shop sells books, maps and magazines. Each item is identified by a unique 4 – digit code. All books
have a code starting with a 1, all maps have a code starting with a 2 and all magazines have a code
beginning with a 3. The code 9999 is used to end the program.

Write an algorithm using pseudocode which input the codes for all items in stock and outputs the number
of books, maps and magazine in stock. Include any validation checks necessary.

(NOTE: A 4-digit code implies all books have a code lying between 1000 and 1999, all maps have a code
lying between 2000 and 2999 and all magazines a code lying between 3000 and 3999. Anything outside
this range is an error)

books  0: maps  0: mags  0
repeat
 input code
 if code > 999 and code < 2000 then books  books + 1
 else if code > 1999 and code < 3000 then maps  maps + 1
 else if code > 2999 and code < 4000 then mags  mags + 1
 else print “error in input”
 endif:endif:endif
until code = 9999
print books, maps, mags

(NOTE: A function called INT(X) is useful in questions like this. This returns the integer (whole number)
part of X e.g. if X = 1.657 then INT(X) = 1; if X = 6.014 then INT(X) = 6 etc. Using this function allows us to
use the case statement to answer this question:

books  0: maps  0: mags  0
repeat
 input code
 x  INT(code/1000) * divides code by 1000 to give a
 case x of * number between 0 and 9
 1: books  books + 1
 2: maps  maps + 1
 3: mags  mags + 1
 otherwise print “error”
 endcase
until code = 9999
print books, maps, mags

(This is probably a more elegant but more complex solution to the problem)

	What is an algorithm?
	Loops

	Common pseudocode terms:
	1.1) Counting
	1.2) Totaling
	1.3) Input/output
	2.1 Example 1
	2.3 Example 3
	2.4 Example 4
	2.5 Example 5

